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This work presents a technique for shape modelling of cylindrical and spherical tablets subject to com-
pression. This technique is based on the use of partial differential equations (PDEs), the biharmonic
equation in particular. The deformation of the compressed elastic-plastic tablet of both shapes was
obtained using the existing contact models found in literature. The mathematical properties of the bihar-
monic equation have been exploited to achieve simple mathematical expressions characterising the shape
of the distorted tablet. Thus, the height, radius and contact area of both configurations due to uniaxial
compression are represented by analytic expressions relating the coefficients associated with the solu-
tion of the biharmonic equation. The results obtained from the PDE-based simulation are compared with
the theoretical ones. It is found that the analytic solution of the elliptic PDE can be utilised to represent
the physical changes of the deformed object.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the pharmaceutical industry, tablets are produced by com-
pacting powders or granules. Many tablets are often constituted by
granules since they have better flow behaviour and can compress
well even at a low pressure (Antonyuk et al., 2010). A granule is
composed of several particles, which bond together by the adhe-
sion force at the contact area (Antonyuk et al., 2005). A tablet
formed from granules will have good characteristics such as consis-
tent hardness, uniform content and ease of controlling drug release
(Tousey, 2002).

The properties of tablets depend on the tabletting process and
granule properties. The tabletting process, which involves three
distinct stages (die filling, compaction process and ejection) can
influence the mechanical strength of the tablet (Coube et al., 2005).
It has been also shown that the bulk density of granules can affect
the compression properties, in which low density granules give
harder tablets (Spaniol et al., 2009). Furthermore, fast-dissolving
tablets have been formed by high plastic granules which allow fast
absorption of water into the compressed tablet and hence provide
a soft paste for easy swallowing (Fu et al., 2005). This type of gran-
ule is produced by a wet granulation process and maintains its
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porosity even after it has been compressed as a tablet (Fu et al.,
2005). Therefore, it is important to explore different formulations
and techniques in order to obtain high-quality granular materials.

The Hertzian contact law has been widely used for a few decades
in discrete element (Wellmann et al., 2008) and finite element
(Kabir et al., 2008) simulations to study the flow and compression
behaviours of elastic granules. Recently a new force-displacement
model for an elastic-plastic granule has been developed (Antonyuk
etal.,2010). This model is derived by extending the model of Tomas
(2001) where the adhesion in the contact has been disregarded.
Elastic and elastic-plastic laws are used in continuum mechan-
ics studies since the properties of granules can be either elastic
or elastic-plastic. Elasticity refers to the ability of a solid to recover
its original shape and volume once the applied load is removed
(Owolabi et al., 2010) whilst the plastic behaviour is in contrast
to elastic behaviour. An elastic-plastic granule is a granule that
has both the elastic and plastic properties. Therefore, it is neces-
sary to understand the mechanical behaviour of granules at elastic,
elastic-plastic and plastic range.

Many studies have been carried out to investigate the mechan-
ical behaviour of elastic-plastic granules in compression tests by
varying the size and shape of granules. For dry granular materi-
als, their mechanical behaviour is measured using several methods
such as ring-shear tests, grain characterisation and simple analogue
experiments (Panien et al., 2006). On the other hand, the mechan-
ical behaviour of wet granules need to be conducted numerically
since they have more complicated behaviour compared to that of
the dry granules (Schulz and Schulz, 2006). It has been reported
in Herbold et al. (2008) that the crushing strength of the granule
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Fig. 1. Compression of a spherical granule. (a) The slow compression of a spherical granule with two contact points. (b) The shape of a granule after the elastic-plastic

deformation.

decreases as the granule size increases. Furthermore, researchers
have shown that a spherical granule has lower flow stresses than
the non-spherical counterpart (Iveson and Page, 2005). Further-
more, according to them, both shapes exhibited transformation
from brittle to plastic failure during the uniaxial compression test.

The purpose of this work is to use PDEs as the foundation for
modelling the mechanical behaviour of compressed cylindrical and
spherical tablets. Generally, the shape of tablets is a cylinder or oval.
However, in this present work we generated a PDE-based represen-
tation of a spherical-shaped tablet and assumed the mechanical
behaviour of the tablet with that particular shape is similar to the
behaviour of a spherical granule. Therefore, we have made use of
the contact law of a granule found in literature to measure the dis-
placement of a compressed spherical tablet and hence relating the
physics of the law to the parametric shape relating to the tablet in
question.

The biharmonic equation has been applied to many areas of
computer graphics including 3D data modelling and processing,
surface blending (You et al., 2004) and animation (Gonzalez Castro
et al., 2010). This method can generate a smooth surface from a
set of boundary curves with a small number of design parame-
ters. Several surface patches can be blended together in order to
model a complex geometry. Moreover, PDE surfaces can easily be
manipulated and remain continuous when the values of its design
parameters are changed (Ugail, 2004). In this context, PDE-based
representations of an object can adapt to physical changes when
the compression test takes place.

The rest of this paper is organised as follows. Section 2
describes the contact models for elastic-plastic tablets and gran-
ules by slow compression. Section 3 provides a brief description
on the modelling technique for generating the shape of the
compressed cylindrical and spherical tablets. Section 4 discusses
the theoretical and PDE-based results for compressed tablets in
both shapes. Finally, Section 5 presents the conclusions of this work.

2. Elastic-plastic contact deformation

In this section, we discuss the mechanical behaviour of two dif-
ferent objects, a cylindrical tablet and a spherical granule, under
a uniaxial compression. It is assumed that both the tablet and the
granule are homogeneous and isotropic.

Recently, a force-displacement model of an axially compressed
flat-faced cylindrical tablet has been proposed by Ahmat et al.

(2010),
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where A, c and h are the contact area, radius and initial height of
the tablet respectively, w, represents an adjustment constant, F
denotes the axial force, E is the Young’s modulus, y is the Pois-
son ratio whilst z and r are any point in axial and radial directions
respectively. The model was developed by utilising one of the solu-
tions of the Love’s stress function together with a particular set
of boundary conditions. The reader can find further details of this
model in the work presented by Ahmat et al. (2010).

In the case of granules, when a soft spherical granule is com-
pressed by two flat surface punches, as shown in Fig. 1(a), two
contact areas are formed. The contact area deforms as a circle with
radius, r. which depends on the granule radius, rs. According to
the existing literature, the radius of the contact area is smaller
than the deformed area (Antonyuk et al., 2010). The shape of the
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Fig. 2. Force-displacement curve of a spherical granule during the compression test.
This graph has been reproduced from Antonyuk et al. (2010).
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compressed granule is illustrated in Fig. 1(b) where the small
spheres in the granule (before and after compression) represent
the group of powder particles.

For an elastic—plastic granule, the plastic deformation starts
when the pressure reaches the micro-yield strength, s,. However,
some authors have reported that the plastic deformation begins
when the maximum contact pressure reaches at 1.6 times of the
uniaxial yield stress (Li et al., 2009). Before the yield point (pp)
is reached, the force-displacement curve of the loaded spherical
granule shows a nonlinear elastic deformation which follows Hertz
law (Tomas, 2001),

F. L\/erwf, 2)

T 31—y

where w; is the full axial displacement. The material behaviour
changes from elastic to elastic-plastic at the yield point as shown
in Fig. 2. When the pressure exceeded the yield pressure (Py), the
total axial displacement of the compressed elastic—plastic granule
at force, Fep is given by (Antonyuk et al., 2010),

1 [J13  wlsyrs(w)msyrs + 324Fep)
Wz = e
8lrssy | m J173
W), SyTs + 162F,
+ Zysep] , (3)
T

where
J = ' 7syrs (1458Fep /Fep(200,775,75 + 729Fep) + 39, 366F2,

+ (w’znsyrs)2 + 486w;nsyrsFep> , (4)

and oy, is the displacement at the yield point and the micro-yield
strength can be derived as

2E W)
sy:mﬂz. (5)

Furthermore, the radius of the contact area of the granule during
the elastic—plastic deformation is given by,

T'e = /TIsWz. (6)

In this work, the linear elastic-plastic models proposed by
Ahmat et al. (2010) and Antonyuk et al. (2010) will be used to
measure the axial displacement of axially compressed cylindrical
and spherical tablets respectively. The theoretical results obtained
from these models will be compared with the simulation results
generated from the PDE method.

3. PDEs for shape modelling

In this section, we provide the essential information concerning
the theoretical modelling of our shape parameterisation technique.
The geometry of the objects in this work are designed by employing
the solution to the biharmonic equation given by,

2
(82 +32> X(u,v) =0, (7)

ETEET

where x(u, v) represents the parametric 3D surface in domain u
and v where 0 <u <1 and 0 <v < 2. The details on the complete
solution of Eq. (7) can be found in the work presented by Bloor and
Wilson (1989), which initially introduced the PDE method into the
area of blend-shape generation in computer-aided design (CAD).
The analytic solution of Eq. (7) is found using the separation of

variables method together with a set of periodic boundary con-
ditions and can be written as,

X, v) = Ao+ Y _[Ay(u)cos(nv) + By(wsin(nw)], (8)

n=1

which can be approximated to a finite value N as,

N
x(u,v) =Ag + Z[An(u)cosmv) + Bp(u)sin(nv)] + R(u, v), 9)
n=1
where
3
Ao =) domti™, (10)
m=0
An = (an + Gp3t)e™ + (anp + apatt)e ™, (11)
Bn = (bnl + anU)enu + (bnz + bn4u)e—nu’ (12)
R(u, v) = (r1(v) + r3(m)u)eP" + (rp(v) + ra(wu)eFu. (13)

The term Ay defines the spine of the surface patch that brings out the
symmetries of that patch whilst Z;’; [A,cos(nv) + B, sin(nv)] gives
aradial position of a point on the surface patch away from the spine
and R is a remainder function responsible for exactly satisfying the
original boundary conditions (Ugail, 2004). The vector-valued con-
stants dg,;, a,; and b,; are determined by the specified boundary
conditions, r; is obtained from the difference between the original
boundary conditions and the approximated ones whilst the value
of Bis chosenas N+1.

Fig. 3 presents the resulting shape of the PDE surface gener-
ated using 4 curves in the 3-space. These rectangular-shaped curves
have been used as the boundary conditions to solve the biharmonic
equation. The PDE surface in Fig. 3 is generated by truncating the
expansion after 5 modes. It is worth highlighting that the shape
of the patch can be controlled solely by the shape of its boundary
curves.

The spine of an object possesses many geometric properties, one
of which is that it constitutes the medial axis (or skeleton) of the
shape. Furthermore, the spine also represents more topologies than
that of the object it is obtained from (Ugail, 2004). Some notable
work has been carried out to investigate how the spine of the PDE
surface can be utilised in parameterising complex shapes (Ugail,
2004). In that work, the author has shown that the spine of the
PDE surface can be used as a powerful tool for shape manipulation.
Furthermore, a cyclic animation has been achieved by exploiting
the mathematical expression associated with the spine of the PDE
surface as a driving mechanism (Gonzalez Castro et al., 2010).
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u=10

Fig. 3. Shape of the PDE surface subject to the particular boundary conditions.
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Fig. 4. Generating curves for a cylinder and hemisphere in (a) and (c). The spine of each surface is also outlined. The resulting surface shape of a cylinder and a hemisphere

in (b) and (d) respectively.

In order to study the mechanical behaviour of the compressed
cylindrical and spherical tablets using the PDE method, first we
need to create the boundary curves that will describe the geometry
shape of both objects as can be seen in Fig. 4(a) and (b). For the
spherical-shaped tablet, only the boundary curves of a hemisphere
are created because of the geometrical and loading symmetries.
These curves are saved in external .OB]J files. Next, we implemented
the PDE method in a C++ program to read the boundary curves and
produce the solution for each set of curves. Finally, the PDE surface
is generated from these boundary curves. For instance, Fig. 4(d)
shows the generated PDE-based representation of a hemisphere
which has been obtained using a mesh grid 11 by 21 points.

Given that the above formulation of the PDE method only gener-
ates the surface of any given object, a new parameter, w in domain
0 <w<1 has been introduced into Eq. (8) in order to generate a

solid representation of that particular object (Ahmat et al., 2010).
This leads to,

X, v) = Ao +w Y [Ay(u)cos(n) + By (u)sin(mv)].

n=1

(14)

This parameter generates interior points of the PDE-based object
from the spine towards its surface. The solid shape of the cylin-
der and hemisphere have been generated and are shown in Fig. 5.
In that figure, the parametric region is set as 0 <(u,w)<1 and
(mw2)<v<2m.

In order to find the contact radius and height of the cylinder
and sphere when they have been compressed axially, we need to
exploit the mathematical properties associated with the analytic

Fig. 5. Solid PDE-based representation of cylindrical and hemispherical tablets.
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Fig. 6. Solid PDE-based representation of a compressed cylindrical and spherical tablets in (a) and (b) respectively.
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solution of the PDE (Eq. (14)) which can be written of the form,

N
Aox + wZ[Anxcos(nv) + Bnxsin(nv)] + Ry,

n=1
N

Agy + wZ[Anycos(nv) + Bnysin(nv)] + Ry,

n=1
N

Aoz + wZ[Aanos(nv) + Bnzsin(nv)] + R;

n=1

(Xxs Xy» Xz) =

(15)

Given that the boundary curves of the cylinder and sphere repre-
sent circles, the approximated solution of the elliptic PDE fits the
original boundary conditions perfectly. Hence, the vector R is equal
to zero. Thus, only the term Ag and the finite series in Eq. (15) can
be considered to represent the height and contact radius of both
objects respectively.

The parametric form of a circle with centre coordinates (xg, ¥o,
z) and radius, r are written as,

(x,y,2z) = (xo +rcosv,yg+rsinv, z). (16)

By comparing Eqgs. (15) and (16), the centre coordinate of the
boundary curve is (Agx, Aoy, Aoz). As one can see in Fig. 4(a) and
(b), the spine of the cylinder and sphere is a straight line parallel to
z, therefore only Ag, is used to represent the spine of both objects,

Aoz = agoz + Ap1zU. (17)

Next, we use the analytic expression for the radius associated with
the PDE surface to find the relation between A, and B,;, and thus
obtaining the simplified equation of the radius. By simple compar-
ison between Eqgs. (15) and (16) when w=1, we noticed that,

N
r cos(v) = Z[Anxcos(nv) + Bpxsin(nv)] = A1xcos(v) + B1xsin(v)
n=1
+ AxCOS(2v) + BoxSin(2v) + - - - + AnxCOS(NvV) + Bnxsin(Nv) — (18)
and
N
rsin(v) = Z[Anycos(nv) + Bnysin(nv)] = Ajycos(v) + Byysin(v)
n=1
+ A3y C0S(2v) + By Sin(2v) + - - - + AnyCos(Nv) + Bysin(Nv) ~ (19)

From Eqs. (18) and (19), we can see that Apx, Bux, Any and Byy for
n>1 are zero. Thus, we can rewrite Eqgs. (18) and (19) as,

r cos(v) = A1xcos(v) + Bixsin(v) and
rsin(v) = Ajycos(v) + Byysin(v). (20)

As aresult, it is observed that A1, = Byy. Another relationship can be
found from the basic equation of a circle,

2

12 = x2 + y2 = (rcosv)? + (rsinv)?, (21)

where we substitute Eq. (20) into Eq. (21),

(rcosv)? + (rsinv)? = (A1ycos(v) + Bixsin(v))? + (A1ycos(v) + Byysin(v))?,
r(cosv)* + r3(sinv)’ = (A3, +Afy)(cos v)* + (B2, + B%y)(sin v)? + 2(A1xB1x + A1yB1y)sin v cosv.

By comparing the LHS and RHS of Eq. (22), the radius of both objects
is then given by,

2 2 2 2
r= \/A1X+A1y= \/le+31y, (23)
and therefore,

A1y = —Bix. (24)
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Fig. 7. Theoretical and PDE-based force-displacement relationships for the com-
pressed spherical (a) lactose and (b) Késtrolith.

The height of the PDE-based sphere or cylinder can be measured
from the length of the spine,
h = Aoz(u = 1) — Ao, (u = 0) = ap1z, (25)

whilst the contact radius is given as,

re = /(A = 1)+ Ay = 1Y (26)

Therefore, it is important to stress that Eqs. (25) and (26) can be
used for the simulation corresponding to the height and contact
area of the PDE-based representation of the pharmaceutical objects
respectively.

(22)

4. Results and discussion

Simulations of the compressed cylindrical and spherical tablets
have been carried out on two different elastic-plastic industrial
materials. The details of corresponding material properties are
found from the literature and are listed in Table 1.
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The shapes of the solid PDE-based representation of a cylindri-
cal lactose tablet and a spherical Késtrolith tablet at different forces
are illustrated in Fig. 6. It is assumed that the contact between the
pharmaceutical tablet and the punches is frictionless. The gener-
ated objects consists of 2000 cuboids, which is produced by defining
the parameter u and w from O to 1 and divided it into 10 equal parts
whilst parameter v is defined by 0, /10, /5, ..., 2.

Fig. 7 shows the contact force-displacement graphs of two
different materials in a spherical shaped configuration, which is
defined by Egs. (3) and (25). Given that our work focuses on
the elastic-plastic deformation behaviour, both graphs start after
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Fig. 9. (a) FEM versus PDE simulations force-displacement curves. (b) Comparison
between the displacement of experimental and simulated compression on lactose
powder.

the load reaches the yield point. A striking linear relationship
between the displacements and the force is observed. Since the
force-displacement model (Eq. (3)) is employed to the boundary
curve of the sphere, hence it is found that our simulation results
agree with the analytical expression remarkably well.

The comparison between the theoretical and simulated con-
tact radius as a function of the axial force have been shown in
Fig. 8. It is observed that the contact radius of spherical lactose
and Kostrolith measured by Eq. (6) are slightly different from those
generated by Eq. (26) at the lower forces. However, as the contact

Table 1

Mechanical characteristics of the examined materials by compression.
Material Shape Radius (mm) E (N/mm?) y Sy (N/mm?)
Lactose (Wu et al., 2003) Sphere 0.1 2080 0.30 616.6
Kostrolith (Antonyuk et al., 2005) Sphere 0.7 820 0.28 71.007
Lactose (Wu et al., 2008) Cylinder 4.0 3570 0.12 22222
Lactose (Ahmat et al., 2010) Cylinder 5.0 2640 0.21 34.013
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force is increased, the curve generated by the PDE method fitted
the theoretical ones.

Fig. 9 displays the force-displacement graphs of compressed
cylindrical tablets consisting of lactose with different properties
(refer Table 1). The force-displacement curve of a tablet with radius
4 mm which is obtained from the Finite Element Method (FEM)
simulation (Wu et al., 2008) shown in Fig. 9(a) is clearly convex. In
contrast, for the PDE simulation which applies Eq. (1), there is a lin-
ear relationship between the axial force and normal displacement.
This difference occurs because the result from FEM simulation is
obtained numerically whilst the other one has been found analyti-
cally. Moreover, the result of the PDE-based models is sensitive to
the elastic properties of the material (Ahmat et al., 2010). On the
other hand, a good agreement between the experimental and simu-
lation results in Fig. 9(b) shows the good accuracy of the PDE-based
model. The experimental result of a compressed cylindrical tablet
of radius 5 mm was produced by the Institute of Pharmaceutical
Innovation (IPI), University of Bradford.

It is clear that the results for the compressed PDE-based repre-
sentation of cylindrical and spherical tablets are in close agreement
with the elastic-plastic deformation models proposed in the litera-
ture. From all our results, it seems that the solution associated with
the particular PDE representing the shape of the tablets under axial
compression can be related to the existing contact law models and
defined key parameters of the overall shape to the PDE coefficients.
Another interesting observation in our results is that the height
and contact radius of the deformed PDE-based representation of a
spherical tablet can be generated by a small set of parameters.

5. Conclusions

The work presented in this paper focuses on the application
of the PDE method for designing a parametric representation
of deformed pharmaceutical tablets in cylindrical and spherical
shapes. The PDE surfaces are generated from boundary curves and a
small set of design parameters. This method can be easily adopted
by taking advantage of its mathematical properties. The various
case studies presented in this paper show that the solution to a
particular elliptic PDE can be exploited as a tool for representing
the deformation and contact law for elastic—plastic cylindrical and
spherical tablets. This is due to the fact that the spine and radius of
the PDE-based object are determined analytically.

The PDE-based simulations of a compressed elastic—plastic
cylinder and sphere are also discussed. The simulation results show
a very good agreement with the elastic—plastic models of both
objects found in literature. However, this simulation can only be
applied to the case involving axial compression of an object gener-
ated from circular-shaped boundary curves and future work can be
carried out to generalise this to more general boundary conditions.
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