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a  b  s  t  r  a  c  t

This  work  presents  a technique  for  shape  modelling  of  cylindrical  and  spherical  tablets  subject  to  com-
pression.  This  technique  is  based  on  the  use  of  partial  differential  equations  (PDEs),  the biharmonic
equation  in  particular.  The  deformation  of  the  compressed  elastic–plastic  tablet  of  both  shapes  was
obtained  using  the  existing  contact  models  found  in literature.  The  mathematical  properties  of  the  bihar-
eywords:
DE method
arametric surfaces
ontact law
ompression
lastic–plastic deformation

monic  equation  have  been  exploited  to  achieve  simple  mathematical  expressions  characterising  the  shape
of the  distorted  tablet.  Thus,  the  height,  radius  and  contact  area  of  both  configurations  due  to  uniaxial
compression  are  represented  by  analytic  expressions  relating  the  coefficients  associated  with  the  solu-
tion of  the  biharmonic  equation.  The  results  obtained  from  the  PDE-based  simulation  are  compared  with
the theoretical  ones.  It  is  found  that the  analytic  solution  of  the  elliptic  PDE  can  be  utilised  to  represent
the  physical  changes  of the deformed  object.
. Introduction

In the pharmaceutical industry, tablets are produced by com-
acting powders or granules. Many tablets are often constituted by
ranules since they have better flow behaviour and can compress
ell even at a low pressure (Antonyuk et al., 2010). A granule is

omposed of several particles, which bond together by the adhe-
ion force at the contact area (Antonyuk et al., 2005). A tablet
ormed from granules will have good characteristics such as consis-
ent hardness, uniform content and ease of controlling drug release
Tousey, 2002).

The properties of tablets depend on the tabletting process and
ranule properties. The tabletting process, which involves three
istinct stages (die filling, compaction process and ejection) can

nfluence the mechanical strength of the tablet (Coube et al., 2005).
t has been also shown that the bulk density of granules can affect
he compression properties, in which low density granules give
arder tablets (Spaniol et al., 2009). Furthermore, fast-dissolving
ablets have been formed by high plastic granules which allow fast

bsorption of water into the compressed tablet and hence provide

 soft paste for easy swallowing (Fu et al., 2005). This type of gran-
le is produced by a wet granulation process and maintains its

∗ Corresponding author. Tel.: +44 7507262565.
E-mail addresses: n.b.ahmat@bradford.ac.uk (N. Ahmat), h.ugail@bradford.ac.uk

H. Ugail), g.gonzalezcastro1@bradford.ac.uk (G. González Castro).
1 Tel.: +44 1274235464.
2 Tel.: +44 1274233648.

378-5173/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijpharm.2012.01.053
© 2012 Elsevier B.V. All rights reserved.

porosity even after it has been compressed as a tablet (Fu et al.,
2005). Therefore, it is important to explore different formulations
and techniques in order to obtain high-quality granular materials.

The Hertzian contact law has been widely used for a few decades
in discrete element (Wellmann et al., 2008) and finite element
(Kabir et al., 2008) simulations to study the flow and compression
behaviours of elastic granules. Recently a new force–displacement
model for an elastic–plastic granule has been developed (Antonyuk
et al., 2010). This model is derived by extending the model of Tomas
(2001) where the adhesion in the contact has been disregarded.
Elastic and elastic–plastic laws are used in continuum mechan-
ics studies since the properties of granules can be either elastic
or elastic–plastic. Elasticity refers to the ability of a solid to recover
its original shape and volume once the applied load is removed
(Owolabi et al., 2010) whilst the plastic behaviour is in contrast
to elastic behaviour. An elastic–plastic granule is a granule that
has both the elastic and plastic properties. Therefore, it is neces-
sary to understand the mechanical behaviour of granules at elastic,
elastic–plastic and plastic range.

Many studies have been carried out to investigate the mechan-
ical behaviour of elastic–plastic granules in compression tests by
varying the size and shape of granules. For dry granular materi-
als, their mechanical behaviour is measured using several methods
such as ring-shear tests, grain characterisation and simple analogue
experiments (Panien et al., 2006). On the other hand, the mechan-

ical behaviour of wet granules need to be conducted numerically
since they have more complicated behaviour compared to that of
the dry granules (Schulz and Schulz, 2006). It has been reported
in Herbold et al. (2008) that the crushing strength of the granule
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contact areas are formed. The contact area deforms as a circle with
radius, rc which depends on the granule radius, rs. According to
the existing literature, the radius of the contact area is smaller
than the deformed area (Antonyuk et al., 2010). The shape of the
ig. 1. Compression of a spherical granule. (a) The slow compression of a spheric
eformation.

ecreases as the granule size increases. Furthermore, researchers
ave shown that a spherical granule has lower flow stresses than
he non-spherical counterpart (Iveson and Page, 2005). Further-

ore, according to them, both shapes exhibited transformation
rom brittle to plastic failure during the uniaxial compression test.

The purpose of this work is to use PDEs as the foundation for
odelling the mechanical behaviour of compressed cylindrical and

pherical tablets. Generally, the shape of tablets is a cylinder or oval.
owever, in this present work we generated a PDE-based represen-

ation of a spherical-shaped tablet and assumed the mechanical
ehaviour of the tablet with that particular shape is similar to the
ehaviour of a spherical granule. Therefore, we have made use of
he contact law of a granule found in literature to measure the dis-
lacement of a compressed spherical tablet and hence relating the
hysics of the law to the parametric shape relating to the tablet in
uestion.

The biharmonic equation has been applied to many areas of
omputer graphics including 3D data modelling and processing,
urface blending (You et al., 2004) and animation (González Castro
t al., 2010). This method can generate a smooth surface from a
et of boundary curves with a small number of design parame-
ers. Several surface patches can be blended together in order to

odel a complex geometry. Moreover, PDE surfaces can easily be
anipulated and remain continuous when the values of its design

arameters are changed (Ugail, 2004). In this context, PDE-based
epresentations of an object can adapt to physical changes when
he compression test takes place.

The rest of this paper is organised as follows. Section 2
escribes the contact models for elastic–plastic tablets and gran-
les by slow compression. Section 3 provides a brief description
n the modelling technique for generating the shape of the
ompressed cylindrical and spherical tablets. Section 4 discusses
he theoretical and PDE-based results for compressed tablets in
oth shapes. Finally, Section 5 presents the conclusions of this work.

. Elastic–plastic contact deformation

In this section, we discuss the mechanical behaviour of two dif-
erent objects, a cylindrical tablet and a spherical granule, under
 uniaxial compression. It is assumed that both the tablet and the
ranule are homogeneous and isotropic.

Recently, a force–displacement model of an axially compressed
at-faced cylindrical tablet has been proposed by Ahmat et al.
nule with two contact points. (b) The shape of a granule after the elastic–plastic

(2010),

ωz = ωz0 + 100Fz2(1 + �)
AhE

[
z2�

r2
− 1 − �

2
+ �2

� − 1

(
1 − c2

r2

)]
,

r > 0, (1)

where A, c and h are the contact area, radius and initial height of
the tablet respectively, ωz0 represents an adjustment constant, F
denotes the axial force, E is the Young’s modulus, � is the Pois-
son ratio whilst z and r are any point in axial and radial directions
respectively. The model was developed by utilising one of the solu-
tions of the Love’s stress function together with a particular set
of boundary conditions. The reader can find further details of this
model in the work presented by Ahmat et al. (2010).

In the case of granules, when a soft spherical granule is com-
pressed by two  flat surface punches, as shown in Fig. 1(a), two
Fig. 2. Force–displacement curve of a spherical granule during the compression test.
This graph has been reproduced from Antonyuk et al. (2010).
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PDE surface can be used as a powerful tool for shape manipulation.
Furthermore, a cyclic animation has been achieved by exploiting
the mathematical expression associated with the spine of the PDE
surface as a driving mechanism (González Castro et al., 2010).
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ompressed granule is illustrated in Fig. 1(b) where the small
pheres in the granule (before and after compression) represent
he group of powder particles.

For an elastic–plastic granule, the plastic deformation starts
hen the pressure reaches the micro-yield strength, sy. However,

ome authors have reported that the plastic deformation begins
hen the maximum contact pressure reaches at 1.6 times of the
niaxial yield stress (Li et al., 2009). Before the yield point (pp)

s reached, the force–displacement curve of the loaded spherical
ranule shows a nonlinear elastic deformation which follows Hertz
aw (Tomas, 2001),

e = E

3(1 − �2)

√
2rsω3

z , (2)

here ωz is the full axial displacement. The material behaviour
hanges from elastic to elastic–plastic at the yield point as shown
n Fig. 2. When the pressure exceeded the yield pressure (Py), the
otal axial displacement of the compressed elastic–plastic granule
t force, Fep is given by (Antonyuk et al., 2010),

z = 1
81rssy

[
J1/3

�
+ ω′

zsyrs(ω′
z�syrs + 324Fep)

J1/3

+ ω′
z�syrs + 162Fep

�

]
, (3)

here

 = ω′
z�syrs

(
1458Fep

√
Fep(2ω′

z�syrs + 729Fep) + 39,  366F2
ep

+ (ω′
z�syrs)

2 + 486ω′
z�syrsFep

)
, (4)

nd ω′
z is the displacement at the yield point and the micro-yield

trength can be derived as

y = 2E

�(1 − �2)

√
ω′

z

rs
. (5)

urthermore, the radius of the contact area of the granule during
he elastic–plastic deformation is given by,

c = √
rsωz. (6)

In this work, the linear elastic–plastic models proposed by
hmat et al. (2010) and Antonyuk et al. (2010) will be used to
easure the axial displacement of axially compressed cylindrical

nd spherical tablets respectively. The theoretical results obtained
rom these models will be compared with the simulation results
enerated from the PDE method.

. PDEs for shape modelling

In this section, we provide the essential information concerning
he theoretical modelling of our shape parameterisation technique.
he geometry of the objects in this work are designed by employing
he solution to the biharmonic equation given by,

∂2

∂u2
+ ∂2

∂v2

)2

�
-

(u, v) = 0, (7)

here �
-

(u, v) represents the parametric 3D surface in domain u
nd v where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2�. The details on the complete

olution of Eq. (7) can be found in the work presented by Bloor and

ilson (1989),  which initially introduced the PDE method into the
rea of blend-shape generation in computer-aided design (CAD).
he analytic solution of Eq. (7) is found using the separation of
harmaceutics 427 (2012) 170– 176

variables method together with a set of periodic boundary con-
ditions and can be written as,

�
-

(u, v) = A-0 +
∞∑

n=1

[A-n(u)cos(nv) + B-n(u)sin(nv)],  (8)

which can be approximated to a finite value N as,

�
-

(u, v) = A-0 +
N∑

n=1

[A-n(u)cos(nv) + B-n(u)sin(nv)] + R-(u, v), (9)

where

A-0 =
3∑

m=0

a-0mum, (10)

A-n = (a-n1 + a-n3u)enu + (a-n2 + a-n4u)e−nu, (11)

B-n = (b-n1 + b-n3u)enu + (b-n2 + b-n4u)e−nu, (12)

R-(u, v) = (r-1(v) + r-3(v)u)eˇu + (r-2(v) + r-4(v)u)e−ˇu. (13)

The term A-0 defines the spine of the surface patch that brings out the
symmetries of that patch whilst

∑∞
n=1[A-ncos(nv) + B-nsin(nv)] gives

a radial position of a point on the surface patch away from the spine
and R- is a remainder function responsible for exactly satisfying the
original boundary conditions (Ugail, 2004). The vector-valued con-
stants a-0m, a-ni and b-ni are determined by the specified boundary
conditions, r-i is obtained from the difference between the original
boundary conditions and the approximated ones whilst the value
of  ̌ is chosen as N + 1.

Fig. 3 presents the resulting shape of the PDE surface gener-
ated using 4 curves in the 3-space. These rectangular-shaped curves
have been used as the boundary conditions to solve the biharmonic
equation. The PDE surface in Fig. 3 is generated by truncating the
expansion after 5 modes. It is worth highlighting that the shape
of the patch can be controlled solely by the shape of its boundary
curves.

The spine of an object possesses many geometric properties, one
of which is that it constitutes the medial axis (or skeleton) of the
shape. Furthermore, the spine also represents more topologies than
that of the object it is obtained from (Ugail, 2004). Some notable
work has been carried out to investigate how the spine of the PDE
surface can be utilised in parameterising complex shapes (Ugail,
2004). In that work, the author has shown that the spine of the
Fig. 3. Shape of the PDE surface subject to the particular boundary conditions.



N. Ahmat et al. / International Journal of Pharmaceutics 427 (2012) 170– 176 173

F  each s
i

c
n
s
s
a
T
t
p
i
s
w

a
0

ig. 4. Generating curves for a cylinder and hemisphere in (a) and (c). The spine of
n  (b) and (d) respectively.

In order to study the mechanical behaviour of the compressed
ylindrical and spherical tablets using the PDE method, first we
eed to create the boundary curves that will describe the geometry
hape of both objects as can be seen in Fig. 4(a) and (b). For the
pherical-shaped tablet, only the boundary curves of a hemisphere
re created because of the geometrical and loading symmetries.
hese curves are saved in external .OBJ files. Next, we implemented
he PDE method in a C++ program to read the boundary curves and
roduce the solution for each set of curves. Finally, the PDE surface

s generated from these boundary curves. For instance, Fig. 4(d)
hows the generated PDE-based representation of a hemisphere

hich has been obtained using a mesh grid 11 by 21 points.

Given that the above formulation of the PDE method only gener-
tes the surface of any given object, a new parameter, w in domain

 ≤ w ≤ 1 has been introduced into Eq. (8) in order to generate a

Fig. 5. Solid PDE-based representation of c

Fig. 6. Solid PDE-based representation of a compressed cylin
urface is also outlined. The resulting surface shape of a cylinder and a hemisphere

solid representation of that particular object (Ahmat et al., 2010).
This leads to,

�
-

(u, v) = A-0 + w

∞∑
n=1

[A-n(u)cos(nv) + B-n(u)sin(nv)]. (14)

This parameter generates interior points of the PDE-based object
from the spine towards its surface. The solid shape of the cylin-
der and hemisphere have been generated and are shown in Fig. 5.
In that figure, the parametric region is set as 0 ≤ (u,w) ≤ 1 and

(�/2) ≤ v ≤ 2�.

In order to find the contact radius and height of the cylinder
and sphere when they have been compressed axially, we need to
exploit the mathematical properties associated with the analytic

ylindrical and hemispherical tablets.

drical and spherical tablets in (a) and (b) respectively.
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olution of the PDE (Eq. (14)) which can be written of the form,

�x, �y, �z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0x + w

N∑
n=1

[Anxcos(nv) + Bnxsin(nv)] + Rx,

A0y + w

N∑
n=1

[Anycos(nv) + Bnysin(nv)] + Ry,

A0z + w

N∑
n=1

[Anzcos(nv) + Bnzsin(nv)] + Rz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(15)

iven that the boundary curves of the cylinder and sphere repre-
ent circles, the approximated solution of the elliptic PDE fits the
riginal boundary conditions perfectly. Hence, the vector R- is equal
o zero. Thus, only the term A-0 and the finite series in Eq. (15) can
e considered to represent the height and contact radius of both
bjects respectively.

The parametric form of a circle with centre coordinates (x0, y0,
) and radius, r are written as,

x, y, z) = (x0 + r cos v, y0 + r sin v, z). (16)

y comparing Eqs. (15) and (16), the centre coordinate of the
oundary curve is (A0x, A0y, A0z). As one can see in Fig. 4(a) and
b), the spine of the cylinder and sphere is a straight line parallel to
, therefore only A0z is used to represent the spine of both objects,

0z = a00z + a01zu. (17)

ext, we use the analytic expression for the radius associated with
he PDE surface to find the relation between A-n and B-n, and thus
btaining the simplified equation of the radius. By simple compar-
son between Eqs. (15) and (16) when w = 1, we noticed that,

 cos(v) =
N∑

n=1

[Anxcos(nv) + Bnxsin(nv)] = A1xcos(v) + B1xsin(v)

+ A2xcos(2v) + B2xsin(2v) + · · · + ANxcos(Nv) + BNxsin(Nv) (18)

nd

 sin(v) =
N∑

n=1

[Anycos(nv) + Bnysin(nv)] = A1ycos(v) + B1ysin(v)

+ A2ycos(2v) + B2ysin(2v) + · · · + ANycos(Nv) + BNysin(Nv) (19)

rom Eqs. (18) and (19), we can see that Anx, Bnx, Any and Bny for
 > 1 are zero. Thus, we can rewrite Eqs. (18) and (19) as,

 cos(v) = A1xcos(v) + B1xsin(v) and

 sin(v) = A1ycos(v) + B1ysin(v). (20)

s a result, it is observed that A1x = B1y. Another relationship can be
ound from the basic equation of a circle,

2 = x2 + y2 = (r cos v)2 + (r sin v)2, (21)

here we substitute Eq. (20) into Eq. (21),

(r cos v)2 + (r sin v)2 = (A1xcos(v) + B1xsin(v))2 + (A1ycos(v) + B1ysin
r2(cos v)2 + r2(sin v)2 = (A2

1x + A2
1y)(cos v)2 + (B2

1x + B2
1y)(sin v)2 + 2

y comparing the LHS and RHS of Eq. (22), the radius of both objects
s then given by,

 =
√

A2 + A2 =
√

B2 + B2 , (23)
1x 1y 1x 1y

nd therefore,

1y = −B1x. (24)
,

1x + A1yB1y)sin v cos v.
(22)

Fig. 7. Theoretical and PDE-based force–displacement relationships for the com-
pressed spherical (a) lactose and (b) Köstrolith.

The height of the PDE-based sphere or cylinder can be measured
from the length of the spine,

h = A0z(u = 1) − A0z(u = 0) = a01z, (25)

whilst the contact radius is given as,

rc =
√

(A1x(u = 1))2 + (A1y(u = 1))2. (26)

Therefore, it is important to stress that Eqs. (25) and (26) can be
used for the simulation corresponding to the height and contact
area of the PDE-based representation of the pharmaceutical objects
respectively.

4. Results and discussion
Simulations of the compressed cylindrical and spherical tablets
have been carried out on two  different elastic–plastic industrial
materials. The details of corresponding material properties are
found from the literature and are listed in Table 1.
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Fig. 9. (a) FEM versus PDE simulations force–displacement curves. (b) Comparison
between the displacement of experimental and simulated compression on lactose
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M

ig. 8. Comparison between the radius of contact area of the theoretical and PDE-
ased spherical (a) lactose and (b) Köstrolith.

The shapes of the solid PDE-based representation of a cylindri-
al lactose tablet and a spherical Köstrolith tablet at different forces
re illustrated in Fig. 6. It is assumed that the contact between the
harmaceutical tablet and the punches is frictionless. The gener-
ted objects consists of 2000 cuboids, which is produced by defining
he parameter u and w from 0 to 1 and divided it into 10 equal parts
hilst parameter v is defined by 0, �/10, �/5, . . .,  2�.
Fig. 7 shows the contact force–displacement graphs of two
ifferent materials in a spherical shaped configuration, which is
efined by Eqs. (3) and (25). Given that our work focuses on
he elastic–plastic deformation behaviour, both graphs start after

able 1
echanical characteristics of the examined materials by compression.

Material Shape Radius (m

Lactose (Wu et al., 2003) Sphere 0.1 

Köstrolith (Antonyuk et al., 2005) Sphere 0.7 

Lactose  (Wu et al., 2008) Cylinder 4.0 

Lactose  (Ahmat et al., 2010) Cylinder 5.0 
powder.

the load reaches the yield point. A striking linear relationship
between the displacements and the force is observed. Since the
force–displacement model (Eq. (3))  is employed to the boundary
curve of the sphere, hence it is found that our simulation results
agree with the analytical expression remarkably well.

The comparison between the theoretical and simulated con-
tact radius as a function of the axial force have been shown in
Fig. 8. It is observed that the contact radius of spherical lactose

and Köstrolith measured by Eq. (6) are slightly different from those
generated by Eq. (26) at the lower forces. However, as the contact

m)  E (N/mm2) � Sy (N/mm2)

2080 0.30 616.6
820 0.28 71.007

3570 0.12 222.22
2640 0.21 34.013
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orce is increased, the curve generated by the PDE method fitted
he theoretical ones.

Fig. 9 displays the force–displacement graphs of compressed
ylindrical tablets consisting of lactose with different properties
refer Table 1). The force–displacement curve of a tablet with radius

 mm which is obtained from the Finite Element Method (FEM)
imulation (Wu et al., 2008) shown in Fig. 9(a) is clearly convex. In
ontrast, for the PDE simulation which applies Eq. (1),  there is a lin-
ar relationship between the axial force and normal displacement.
his difference occurs because the result from FEM simulation is
btained numerically whilst the other one has been found analyti-
ally. Moreover, the result of the PDE-based models is sensitive to
he elastic properties of the material (Ahmat et al., 2010). On the
ther hand, a good agreement between the experimental and simu-
ation results in Fig. 9(b) shows the good accuracy of the PDE-based

odel. The experimental result of a compressed cylindrical tablet
f radius 5 mm  was produced by the Institute of Pharmaceutical
nnovation (IPI), University of Bradford.

It is clear that the results for the compressed PDE-based repre-
entation of cylindrical and spherical tablets are in close agreement
ith the elastic–plastic deformation models proposed in the litera-

ure. From all our results, it seems that the solution associated with
he particular PDE representing the shape of the tablets under axial
ompression can be related to the existing contact law models and
efined key parameters of the overall shape to the PDE coefficients.
nother interesting observation in our results is that the height
nd contact radius of the deformed PDE-based representation of a
pherical tablet can be generated by a small set of parameters.

. Conclusions

The work presented in this paper focuses on the application
f the PDE method for designing a parametric representation
f deformed pharmaceutical tablets in cylindrical and spherical
hapes. The PDE surfaces are generated from boundary curves and a
mall set of design parameters. This method can be easily adopted
y taking advantage of its mathematical properties. The various
ase studies presented in this paper show that the solution to a
articular elliptic PDE can be exploited as a tool for representing
he deformation and contact law for elastic–plastic cylindrical and
pherical tablets. This is due to the fact that the spine and radius of
he PDE-based object are determined analytically.

The PDE-based simulations of a compressed elastic–plastic
ylinder and sphere are also discussed. The simulation results show

 very good agreement with the elastic–plastic models of both

bjects found in literature. However, this simulation can only be
pplied to the case involving axial compression of an object gener-
ted from circular-shaped boundary curves and future work can be
arried out to generalise this to more general boundary conditions.
harmaceutics 427 (2012) 170– 176
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